When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    The function f(x) = √ x defined on [0, 1] is not Lipschitz continuous. This function becomes infinitely steep as x approaches 0 since its derivative becomes infinite. However, it is uniformly continuous, [8] and both Hölder continuous of class C 0, α for α ≤ 1/2 and also absolutely continuous on [0, 1] (both of which imply the former).

  3. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    For example, if a child grows from 1 m to 1.5 m between the ages of two and six years, then, at some time between two and six years of age, the child's height must have been 1.25 m. As a consequence, if f is continuous on [,] and () and () differ in sign, then, at some point [,], must equal zero.

  4. Absolute continuity - Wikipedia

    en.wikipedia.org/wiki/Absolute_continuity

    A continuous function fails to be absolutely continuous if it fails to be uniformly continuous, which can happen if the domain of the function is not compact – examples are tan(x) over [0, π/2), x 2 over the entire real line, and sin(1/x) over (0, 1]. But a continuous function f can

  5. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    The C 0 function f (x) = x for x0 and 0 otherwise. The function g ( x ) = x 2 sin(1/ x ) for x > 0 . The function f : R → R {\displaystyle f:\mathbb {R} \to \mathbb {R} } with f ( x ) = x 2 sin ⁡ ( 1 x ) {\displaystyle f(x)=x^{2}\sin \left({\tfrac {1}{x}}\right)} for x0 {\displaystyle x\neq 0} and f ( 0 ) = 0 {\displaystyle f(0)=0 ...

  6. Modulus of continuity - Wikipedia

    en.wikipedia.org/wiki/Modulus_of_continuity

    For instance, the function f : N → R such that f(n) := n 2 is uniformly continuous with respect to the discrete metric on N, and its minimal modulus of continuity is ω f (t) = +∞ for any t≥1, and ω f (t) = 0 otherwise. However, the situation is different for uniformly continuous functions defined on compact or convex subsets of normed ...

  7. Rolle's theorem - Wikipedia

    en.wikipedia.org/wiki/Rolle's_theorem

    Then f (−1) = f (1), but there is no c between −1 and 1 for which the f ′(c) is zero. This is because that function, although continuous, is not differentiable at x = 0. The derivative of f changes its sign at x = 0, but without attaining the value 0.

  8. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    The function's integral is equal to over any set because the function is equal to zero almost everywhere. If G = { ( x , f ( x ) ) : x ∈ ( 0 , 1 ) } ⊂ R 2 {\displaystyle G=\{\,(x,f(x)):x\in (0,1)\,\}\subset \mathbb {R} ^{2}} is the graph of the restriction of f {\displaystyle f} to ( 0 , 1 ) {\displaystyle (0,1)} , then the box-counting ...

  9. Fixed-point property - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_property

    If f(0) = 0 or f(1) = 1, then our mapping has a fixed point at 0 or 1. If not, then f(0) > 0 and f(1) − 1 < 0. Thus the function g(x) = f(x) − x is a continuous real valued function which is positive at x = 0 and negative at x = 1. By the intermediate value theorem, there is some point x 0 with g(x 0) = 0, which is to say that f(x 0) − x ...