When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Method of image charges - Wikipedia

    en.wikipedia.org/wiki/Method_of_image_charges

    The method of image charges (also known as the method of images and method of mirror charges) is a basic problem-solving tool in electrostatics.The name originates from the replacement of certain elements in the original layout with fictitious charges, which replicates the boundary conditions of the problem (see Dirichlet boundary conditions or Neumann boundary conditions).

  3. Transfer-matrix method (optics) - Wikipedia

    en.wikipedia.org/wiki/Transfer-matrix_method...

    The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium; a stack of thin films. [ 1 ] [ 2 ] This is, for example, relevant for the design of anti-reflective coatings and dielectric mirrors .

  4. Ray transfer matrix analysis - Wikipedia

    en.wikipedia.org/wiki/Ray_transfer_matrix_analysis

    Each optical element (surface, interface, mirror, or beam travel) is described by a 2 × 2 ray transfer matrix which operates on a vector describing an incoming light ray to calculate the outgoing ray. Multiplication of the successive matrices thus yields a concise ray transfer matrix describing the entire optical system.

  5. Method of images - Wikipedia

    en.wikipedia.org/wiki/Method_of_images

    The method of images (or method of mirror images) is a mathematical tool for solving differential equations, in which boundary conditions are satisfied by combining a solution not restricted by the boundary conditions with its possibly weighted mirror image. Generally, original singularities are inside the domain of interest but the function is ...

  6. Alhazen's problem - Wikipedia

    en.wikipedia.org/wiki/Alhazen's_problem

    If the camera (eye) is placed on the axis of the mirror, the degree of the equation reduces to six. [15] Alhazen's problem can also be extended to multiple refractions from a spherical ball. Given a light source and a spherical ball of certain refractive index , the closest point on the spherical ball where the light is refracted to the eye of ...

  7. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    Image distance in a spherical mirror + = () Subscripts 1 and 2 refer to initial and final optical media respectively. These ratios are sometimes also used, following simply from other definitions of refractive index, wave phase velocity, and the luminal speed equation:

  8. Geometrical optics - Wikipedia

    en.wikipedia.org/wiki/Geometrical_optics

    In particular, spherical mirrors exhibit spherical aberration. Curved mirrors can form images with magnification greater than or less than one, and the image can be upright or inverted. An upright image formed by reflection in a mirror is always virtual, while an inverted image is real and can be projected onto a screen. [3]

  9. Sagitta (geometry) - Wikipedia

    en.wikipedia.org/wiki/Sagitta_(geometry)

    In the following equations, denotes the sagitta (the depth or height of the arc), equals the radius of the circle, and the length of the chord spanning the base of the arc. As 1 2 l {\displaystyle {\tfrac {1}{2}}l} and r − s {\displaystyle r-s} are two sides of a right triangle with r {\displaystyle r} as the hypotenuse , the Pythagorean ...