Search results
Results From The WOW.Com Content Network
1.0 long cwt (110 lb; 51 kg) short hundredweight: short cwt short cwt 1.0 short cwt (100 lb; 45 kg) long quarter: long qtr long qtr 1.0 long qtr (28 lb; 13 kg) short quarter: short qtr short qtr 1.0 short qtr (25 lb; 11 kg) stone: st st 14 lb used mostly in the British Commonwealth except Canada 1.0 st (14 lb; 6.4 kg) st kg. st kg lb; st lb
For astronomical bodies other than Earth, and for short distances of fall at other than "ground" level, g in the above equations may be replaced by (+) where G is the gravitational constant, M is the mass of the astronomical body, m is the mass of the falling body, and r is the radius from the falling object to the center of the astronomical body.
We can convert a mass expressed in kilograms to the equivalent mass expressed in metres by multiplying by the conversion factor G/c 2. For example, the Sun's mass of 2.0 × 10 30 kg in SI units is equivalent to 1.5 km. This is half the Schwarzschild radius of a one solar mass black hole. All other conversion factors can be worked out by ...
An overview of ranges of mass. To help compare different orders of magnitude, the following lists describe various mass levels between 10 −67 kg and 10 52 kg. The least massive thing listed here is a graviton, and the most massive thing is the observable universe.
Converts measurements to other units. Template parameters [Edit template data] This template prefers inline formatting of parameters. Parameter Description Type Status Value 1 The value to convert. Number required From unit 2 The unit for the provided value. Suggested values km2 m2 cm2 mm2 ha sqmi acre sqyd sqft sqin km m cm mm mi yd ft in kg g mg lb oz m/s km/h mph K C F m3 cm3 mm3 L mL cuft ...
The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J⋅s, which is equal to kg⋅m 2 ⋅s −1 , where the metre and the second are defined in terms of c and Δ ν Cs .
Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater than 100 kilograms.
= 42.637 682 78 kg: barge: ≡ 22 + 1 ⁄ 2 short ton = 20 411.656 65 kg: carat: kt ≡ 3 + 1 ⁄ 6 gr = 205.196 548 3 mg carat (metric) ct ≡ 200 mg = 200 mg clove: ≡ 8 lb av = 3.628 738 96 kg: crith: ≡ mass of 1 L of hydrogen gas at STP: ≈ 89.9349 mg dalton: Da 1/12 the mass of an unbound neutral atom of carbon-12 in its nuclear and ...