Search results
Results From The WOW.Com Content Network
The Platonic solids have been known since antiquity. It has been suggested that certain carved stone balls created by the late Neolithic people of Scotland represent these shapes; however, these balls have rounded knobs rather than being polyhedral, the numbers of knobs frequently differed from the numbers of vertices of the Platonic solids, there is no ball whose knobs match the 20 vertices ...
The 5 Platonic solids are called a tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron with 4, 6, 8, 12, and 20 sides respectively. The regular hexahedron is a cube . Table of polyhedra
In geometry, a dodecahedron (from Ancient Greek δωδεκάεδρον (dōdekáedron); from δώδεκα (dṓdeka) 'twelve' and ἕδρα (hédra) 'base, seat, face') or duodecahedron [1] is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid.
Net. In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C 120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron [1] and hecatonicosahedroid.
Example 1: If a block of solid stone weighs 3 kilograms on dry land and 2 kilogram when immersed in a tub of water, then it has displaced 1 kilogram of water. Since 1 liter of water weighs 1 kilogram (at 4 °C), it follows that the volume of the block is 1 liter and the density (mass/volume) of the stone is 3 kilograms/liter.
A comparison between the five platonic solids and the corresponding three platonic hydrocarbons. In organic chemistry, a Platonic hydrocarbon is a hydrocarbon whose structure matches one of the five Platonic solids, with carbon atoms replacing its vertices, carbon–carbon bonds replacing its edges, and hydrogen atoms as needed. [1] [page needed]
In fluid mechanics, displacement occurs when an object is largely immersed in a fluid, pushing it out of the way and taking its place. The volume of the fluid displaced can then be measured, and from this, the volume of the immersed object can be deduced: the volume of the immersed object will be exactly equal to the volume of the displaced fluid.
The Catalan solids, the bipyramids, and the trapezohedra are all isohedral. They are the duals of the (isogonal) Archimedean solids, prisms, and antiprisms, respectively. The Platonic solids, which are either self-dual or dual with another Platonic solid, are vertex-, edge-, and face-transitive (i.e. isogonal, isotoxal, and isohedral).