Search results
Results From The WOW.Com Content Network
The manufacture of semiconductors controls precisely the location and concentration of p- and n-type dopants. The connection of n-type and p-type semiconductors form p–n junctions. The most common semiconductor device in the world is the MOSFET (metal–oxide–semiconductor field-effect transistor), [1] also called the MOS transistor.
The first practical application of semiconductors in electronics was the 1904 development of the cat's-whisker detector, a primitive semiconductor diode used in early radio receivers. Developments in quantum physics led in turn to the invention of the transistor in 1947 [ 7 ] and the integrated circuit in 1958.
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
Absorption is the active process in photodiodes, solar cells and other semiconductor photodetectors, while stimulated emission is the principle of operation in laser diodes. Besides light excitation, carriers in semiconductors can also be generated by an external electric field, for example in light-emitting diodes and transistors.
In semiconductor manufacturing, the 2 nm process is the next MOSFET (metal–oxide–semiconductor field-effect transistor) die shrink after the 3 nm process node.. The term "2 nanometer", or alternatively "20 angstrom" (a term used by Intel), has no relation to any actual physical feature (such as gate length, metal pitch or gate pitch) of the transistors.
A semiconductor diode, the most commonly used type today, is a crystalline piece of semiconductor material with a p–n junction connected to two electrical terminals. [5] It has an exponential current–voltage characteristic. Semiconductor diodes were the first semiconductor electronic devices.
In electronics and semiconductor physics, the law of mass action relates the concentrations of free electrons and electron holes under thermal equilibrium. It states that, under thermal equilibrium , the product of the free electron concentration n {\displaystyle n} and the free hole concentration p {\displaystyle p} is equal to a constant ...
The conduction of current of intrinsic semiconductor is enabled purely by electron excitation across the band-gap, which is usually small at room temperature except for narrow-bandgap semiconductors, like Hg 0.8 Cd 0.2 Te. The conductivity of a semiconductor can be modeled in terms of the band theory of solids.