Search results
Results From The WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]
Its existence is based on the following theorem: Given two univariate polynomials a(x) and b(x) (where b(x) is a non-zero polynomial) defined over a field (in particular, the reals or complex numbers), there exist two polynomials q(x) (the quotient) and r(x) (the remainder) which satisfy: [7]
Thus, the function may be more "cheaply" evaluated using synthetic division and the polynomial remainder theorem. The factor theorem is another application of the remainder theorem: if the remainder is zero, then the linear divisor is a factor. Repeated application of the factor theorem may be used to factorize the polynomial. [3]
Divide the highest term of the remainder by the highest term of the divisor (3x ÷ x = 3). Place the result (+3) below the bar. 3x has been divided leaving no remainder, and can therefore be marked as used. The result 3 is then multiplied by the second term in the divisor −3 = −9. Determine the partial remainder by subtracting −4 − (− ...
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Its existence is based on the following theorem: Given two univariate polynomials a and b ≠ 0 defined over a field, there exist two polynomials q (the quotient) and r (the remainder) which satisfy = + and < (), where "deg(...)" denotes the degree and the degree of the zero polynomial is defined as being negative.
This first statement was restricted to the following example: If one knows that the remainder of n divided by 3 is 2, the remainder of n divided by 5 is 3, and the remainder of n divided by 7 is 2, then with no other information, one can determine the remainder of n divided by 105 (the product of 3, 5, and 7) without knowing the value of n. In ...
Given an element a and a non-zero element b in a Euclidean domain R equipped with a Euclidean function d (also known as a Euclidean valuation [8] or degree function [7]), there exist q and r in R such that a = bq + r and either r = 0 or d(r) < d(b). Uniqueness of q and r is not required. [1]