Search results
Results From The WOW.Com Content Network
Although often referred to as the area of a circle in informal contexts, strictly speaking, the term disk refers to the interior region of the circle, while circle is reserved for the boundary only, which is a curve and covers no area itself. Therefore, the area of a disk is the more precise phrase for the area enclosed by a circle.
The circle and the triangle are equal in area. Proposition one states: The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference of the circle.
The formula for the area of a circle (more properly called the area enclosed by a circle or the area of a disk) is based on a similar method. Given a circle of radius r, it is possible to partition the circle into sectors, as shown in the figure to the right. Each sector is approximately triangular in shape, and the sectors can be rearranged to ...
A circle bounds a region of the plane called a disc. The circle has been known since before the beginning of recorded history. Natural circles are common, such as the full moon or a slice of round fruit. The circle is the basis for the wheel, which, with related inventions such as gears, makes much of modern
A circular segment (in green) is enclosed between a secant/chord (the dashed line) and the arc whose endpoints equal the chord's (the arc shown above the green area). In geometry, a circular segment or disk segment (symbol: ⌓) is a region of a disk [1] which is "cut off" from the rest of the disk by a straight line.
The area of a circle with radius r is πr 2. The area of an ellipse with semi-major axis a and semi-minor axis b is πab. [156] The volume of a sphere with radius r is 4 / 3 πr 3. The surface area of a sphere with radius r is 4πr 2. Some of the formulae above are special cases of the volume of the n-dimensional ball and the surface ...
Squaring the circle is a problem in geometry first proposed in Greek mathematics.It is the challenge of constructing a square with the area of a given circle by using only a finite number of steps with a compass and straightedge.
Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that