Ads
related to: the remainder theorem calculator
Search results
Results From The WOW.Com Content Network
The polynomial remainder theorem may be used to evaluate () by calculating the remainder, . Although polynomial long division is more difficult than evaluating the function itself, synthetic division is computationally easier. Thus, the function may be more "cheaply" evaluated using synthetic division and the polynomial remainder theorem.
The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8] Polynomial division leads to a result known as the polynomial remainder theorem: If a polynomial f(x) is divided by x − k, the remainder is the constant r = f(k). [9] [10]
The Chinese remainder theorem is widely used for computing with large integers, as it allows replacing a computation for which one knows a bound on the size of the result by several similar computations on small integers. The Chinese remainder theorem (expressed in terms of congruences) is true over every principal ideal domain.
Modular multiplicative inverses are used to obtain a solution of a system of linear congruences that is guaranteed by the Chinese Remainder Theorem. For example, the system X ≡ 4 (mod 5) X ≡ 4 (mod 7) X ≡ 6 (mod 11) has common solutions since 5,7 and 11 are pairwise coprime. A solution is given by
Remainder theorem may refer to: Polynomial remainder theorem; Chinese remainder theorem This page was last edited on 29 December 2019, at 22:03 (UTC). Text is ...
Euler's Phi Function and the Chinese Remainder Theorem — proof that φ(n) is multiplicative Archived 2021-02-28 at the Wayback Machine; Euler's totient function calculator in JavaScript — up to 20 digits; Dineva, Rosica, The Euler Totient, the Möbius, and the Divisor Functions Archived 2021-01-16 at the Wayback Machine
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
This is the form of the remainder term mentioned after the actual statement of Taylor's theorem with remainder in the mean value form. The Lagrange form of the remainder is found by choosing () = + and the Cauchy form by choosing () =. Remark.