Search results
Results From The WOW.Com Content Network
The Smith–Wilson method is a method for extrapolating forward rates. It is recommended by EIOPA to extrapolate interest rates. It was introduced in 2000 by A. Smith and T. Wilson for Bacon & Woodrow .
repeat until the discounted value at the first node in the tree equals the zero-price corresponding to the given spot interest rate for the i-th time-step. Step 2. Once solved, retain these known short rates, and proceed to the next time-step (i.e. input spot-rate), "growing" the tree until it incorporates the full input yield-curve.
Each forward rate is modeled by a lognormal process under its forward measure, i.e. a Black model leading to a Black formula for interest rate caps. This formula is the market standard to quote cap prices in terms of implied volatilities, hence the term "market model".
Note the dividend rate q 1 of the first asset remains the same even with change of pricing. Applying the Black-Scholes formula with these values as the appropriate inputs, e.g. initial asset value S 1 (0)/S 2 (0), interest rate q 2, volatility σ, etc., gives us the price of the option under numeraire pricing.
John Hull and Alan White, "One factor interest rate models and the valuation of interest rate derivative securities," Journal of Financial and Quantitative Analysis, Vol 28, No 2, (June 1993) pp. 235–254. John Hull and Alan White, "Pricing interest-rate derivative securities", The Review of Financial Studies, Vol 3, No. 4 (1990) pp. 573–592.
The Black formula is similar to the Black–Scholes formula for valuing stock options except that the spot price of the underlying is replaced by a discounted futures price F. Suppose there is constant risk-free interest rate r and the futures price F(t) of a particular underlying is log-normal with constant volatility σ.
Given: 0.5-year spot rate, Z1 = 4%, and 1-year spot rate, Z2 = 4.3% (we can get these rates from T-Bills which are zero-coupon); and the par rate on a 1.5-year semi-annual coupon bond, R3 = 4.5%. We then use these rates to calculate the 1.5 year spot rate. We solve the 1.5 year spot rate, Z3, by the formula below:
Option-adjusted spread (OAS) is the yield spread which has to be added to a benchmark yield curve to discount a security's payments to match its market price, using a dynamic pricing model that accounts for embedded options. OAS is hence model-dependent.