Search results
Results From The WOW.Com Content Network
Polynomials of small degree have been given specific names. A polynomial of degree zero is a constant polynomial, or simply a constant. Polynomials of degree one, two or three are respectively linear polynomials, quadratic polynomials and cubic polynomials. [8]
Multiplying this by the generating function for the complete homogeneous symmetric polynomials, one obtains the constant series 1 (equivalently, plethystic exponentials satisfy the usual properties of an exponential), and the relation between the elementary and complete homogeneous polynomials follows from comparing coefficients of t m.
Integer-valued polynomials may be used effectively to solve questions about fixed divisors of polynomials. For example, the polynomials P with integer coefficients that always take on even number values are just those such that / is integer valued. Those in turn are the polynomials that may be expressed as a linear combination with even integer ...
When every term of a series is a non-negative real number, for instance when the terms are the absolute values of another series of real numbers or complex numbers, the sequence of partial sums is non-decreasing. Therefore a series with non-negative terms converges if and only if the sequence of partial sums is bounded, and so finding a bound ...
The total number of monomials appearing in a complete Bell polynomial B n is thus equal to the total number of integer partitions of n. Also the degree of each monomial, which is the sum of the exponents of each variable in the monomial, is equal to the number of blocks the set is divided into.
A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).
The following problem is the main open problem in this area of research: find an explicit polynomial of polynomial degree that requires circuits of superpolynomial size. The state of the art is a Ω ( n log d ) {\displaystyle \Omega (n\log d)} lower bound for the size of a circuit computing, e.g., the polynomial x 1 d + ⋯ + x n d ...
Horner's method can be used to convert between different positional numeral systems – in which case x is the base of the number system, and the a i coefficients are the digits of the base-x representation of a given number – and can also be used if x is a matrix, in which case the gain in computational efficiency is even greater.