When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Binding energy - Wikipedia

    en.wikipedia.org/wiki/Binding_energy

    The atomic binding energy of the atom is the energy required to disassemble an atom into free electrons and a nucleus. [4] It is the sum of the ionization energies of all the electrons belonging to a specific atom. The atomic binding energy derives from the electromagnetic interaction of the electrons with the nucleus, mediated by photons.

  3. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    The atomic binding energy is simply the amount of energy (and mass) released, when a collection of free nucleons are joined to form a nucleus. Nuclear binding energy can be computed from the difference in mass of a nucleus, and the sum of the masses of the number of free neutrons and protons that make up the nucleus.

  4. Gravitational binding energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_binding_energy

    Using this, the real gravitational binding energy of Earth can be calculated numerically as U = 2.49 × 10 32 J. According to the virial theorem, the gravitational binding energy of a star is about two times its internal thermal energy in order for hydrostatic equilibrium to be maintained. [2]

  5. Ligand efficiency - Wikipedia

    en.wikipedia.org/wiki/Ligand_efficiency

    Ligand efficiency is a measurement of the binding energy per atom of a ligand to its binding partner, such as a receptor or enzyme. [1]Ligand efficiency is used in drug discovery research programs to assist in narrowing focus to lead compounds with optimal combinations of physicochemical properties and pharmacological properties.

  6. Bond energy - Wikipedia

    en.wikipedia.org/wiki/Bond_energy

    The bond dissociation energy (enthalpy) [4] is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D). It is defined as the standard enthalpy change of the following fission: R—X → R + X. The BDE, denoted by Dº(R—X), is usually derived by the thermochemical equation,

  7. Semi-empirical mass formula - Wikipedia

    en.wikipedia.org/wiki/Semi-empirical_mass_formula

    Coulomb energy, the potential energy from each pair of protons. As this is a repelling force, the binding energy is reduced. Asymmetry energy (also called Pauli energy), which accounts for the Pauli exclusion principle. Unequal numbers of neutrons and protons imply filling higher energy levels for one type of particle, while leaving lower ...

  8. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    This is possible due to a release of energy that occurs when the substrate binds to the active site of a catalyst. This energy is known as Binding Energy. Upon binding to a catalyst, substrates partake in numerous stabilizing forces while within the active site (e.g. hydrogen bonding or van der Waals forces). Specific and favorable bonding ...

  9. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    The difference between the two masses is called the mass defect and is related to the binding energy through Einstein's formula. [31] [32] [33] The principle is used in modeling nuclear fission reactions, and it implies that a great amount of energy can be released by the nuclear fission chain reactions used in both nuclear weapons and nuclear ...