When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Binding energy - Wikipedia

    en.wikipedia.org/wiki/Binding_energy

    The atomic binding energy of the atom is the energy required to disassemble an atom into free electrons and a nucleus. [4] It is the sum of the ionization energies of all the electrons belonging to a specific atom. The atomic binding energy derives from the electromagnetic interaction of the electrons with the nucleus, mediated by photons.

  3. Bond energy - Wikipedia

    en.wikipedia.org/wiki/Bond_energy

    The bond dissociation energy (enthalpy) [4] is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D). It is defined as the standard enthalpy change of the following fission: R—X → R + X. The BDE, denoted by Dº(R—X), is usually derived by the thermochemical equation,

  4. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is always a positive number, as the nucleus must gain energy for the nucleons to move apart from each other.

  5. Valley of stability - Wikipedia

    en.wikipedia.org/wiki/Valley_of_stability

    For very small atomic mass number (H, He, Li), binding energy per nucleon is small, and this energy increases rapidly with atomic mass number. Nickel-62 (28 protons, 34 neutrons) has the highest mean binding energy of all nuclides, while iron-58 (26 protons, 32 neutrons) and iron-56 (26 protons, 30 neutrons) are a close second and third. [13]

  6. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    This is possible due to a release of energy that occurs when the substrate binds to the active site of a catalyst. This energy is known as Binding Energy. Upon binding to a catalyst, substrates partake in numerous stabilizing forces while within the active site (e.g. hydrogen bonding or van der Waals forces). Specific and favorable bonding ...

  7. Gravitational binding energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_binding_energy

    The gravitational binding energy of a system is the minimum energy which must be added to it in order for the system to cease being in a gravitationally bound state.

  8. Trion (physics) - Wikipedia

    en.wikipedia.org/wiki/Trion_(physics)

    The binding energy of a trion is largely determined by the exchange interaction between the two electrons (holes). The ground state of a negatively charged trion is a singlet (total spin of two electrons S=0). The triplet state (total spin of two electrons S=1) is unbound in the absence of an additional potential or sufficiently strong magnetic ...

  9. Quantum chromodynamics binding energy - Wikipedia

    en.wikipedia.org/wiki/Quantum_chromodynamics...

    Quantum chromodynamics binding energy (QCD binding energy), gluon binding energy or chromodynamic binding energy is the energy binding quarks together into hadrons. It is the energy of the field of the strong force, which is mediated by gluons. Motion-energy and interaction-energy contribute most of the hadron's mass. [1]