Search results
Results From The WOW.Com Content Network
Plant perception is the ability of plants to sense and respond to the environment by adjusting their morphology and physiology. [1] Botanical research has revealed that plants are capable of reacting to a broad range of stimuli, including chemicals, gravity, light, moisture, infections, temperature, oxygen and carbon dioxide concentrations, parasite infestation, disease, physical disruption ...
This system allows physical force to create an ion flux, which then results in signal integration and response (as detailed below). MS channels are hypothesized to be the working mechanism in the perception of gravity, vibration, touch, hyper-osmotic and hypo-osmotic stress, pathogenic invasion, and interaction with commensal microbes.
Plant communication encompasses communication using volatile organic compounds, electrical signaling, and common mycorrhizal networks between plants and a host of other organisms such as soil microbes, [2] other plants [3] (of the same or other species), animals, [4] insects, [5] and fungi. [6]
This example of acoustic aggressive mimicry is similar to the Photuris firefly case in that the predator's mimicry is remarkably versatile – playback experiments show that C. leucoviridis is able to attract males of many cicada species, including Cicadettine cicadas from other continents, even though cicada mating signals are species-specific.
Animals detect touch by the somatosensory system which responses to changes at the surface or inside the body. The mechanoreceptors in the somatosensory system can be found the skin surface of most aquatic animals, as well as on the vibrissae of pinnipeds or on the hair of whales. Tactile signals are used for:
A local graded potential begins in the photoreceptor, where it excites the cell enough for the impulse to be passed along through a track of neurons to the central nervous system. As the signal travels from photoreceptors to larger neurons, action potentials must be created for the signal to have enough strength to reach the CNS. [4]
The somatosensory system assimilates many kinds of information from the environment: temperature, texture, pressure, proprioception, and pain. The signals vary for each of these perceptions, and the receptor systems reflect this: thermoreceptors, mechanoreceptors, nociceptors, and chemoreceptors.
Club neurons are thought to encode vibrational signals while claw and hook neurons can be subdivided into extension and flexion populations that encode joint angle and movement respectively. [16] Slit sensilla: Slits in the exoskeleton that detect physical deformation of the animal's exoskeleton, have proprioceptive function.