Search results
Results From The WOW.Com Content Network
Sample size determination or estimation is the act of choosing the number of observations or replicates to include in a statistical sample. The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined ...
Asymptotic theory (statistics) In statistics, asymptotic theory, or large sample theory, is a framework for assessing properties of estimators and statistical tests. Within this framework, it is often assumed that the sample size n may grow indefinitely; the properties of estimators and tests are then evaluated under the limit of n → ∞.
The empirical distribution function is an estimate of the cumulative distribution function that generated the points in the sample. It converges with probability 1 to that underlying distribution, according to the Glivenko–Cantelli theorem. A number of results exist to quantify the rate of convergence of the empirical distribution function to ...
The bootstrap sample is taken from the original by using sampling with replacement (e.g. we might 'resample' 5 times from [1,2,3,4,5] and get [2,5,4,4,1]), so, assuming N is sufficiently large, for all practical purposes there is virtually zero probability that it will be identical to the original "real" sample. This process is repeated a large ...
In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T 2), proposed by Harold Hotelling, [1] is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution.
Power (statistics) In frequentist statistics, power is a measure of the ability of an experimental design and hypothesis testing setup to detect a particular effect if it is truly present. In typical use, it is a function of the test used (including the desired level of statistical significance), the assumed distribution of the test (for ...
Convergence in probability does not imply almost sure convergence in the discrete case. If Xn are independent random variables assuming value one with probability 1/ n and zero otherwise, then Xn converges to zero in probability but not almost surely. This can be verified using the Borel–Cantelli lemmas.
To estimate μ based on the first n observations, one can use the sample mean: T n = (X 1 + ... + X n)/n. This defines a sequence of estimators, indexed by the sample size n . From the properties of the normal distribution, we know the sampling distribution of this statistic: T n is itself normally distributed, with mean μ and variance σ 2 / n .