Search results
Results From The WOW.Com Content Network
Rotation matrix. In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix. rotates points in the xy plane counterclockwise through an angle θ about the origin of a two-dimensional Cartesian coordinate system.
A spatial rotation around a fixed point of radians about a unit axis that denotes the Euler axis is given by the quaternion , where and . Compared to rotation matrices, quaternions are more compact, efficient, and numerically stable. Compared to Euler angles, they are simpler to compose.
In mechanics and geometry, the 3D rotation group, often denoted SO (3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. [1] By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry), and orientation ...
In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational (or angular) kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is ...
In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO (3), the group of all rotation matrices ...
The Euler or Tait–Bryan angles (α, β, γ) are the amplitudes of these elemental rotations. For instance, the target orientation can be reached as follows (note the reversed order of Euler angle application): The XYZ system rotates about the z axis by γ. The X axis is now at angle γ with respect to the x axis.
Gimbal lock is the loss of one degree of freedom in a multi-dimensional mechanism at certain alignments of the axes. In a three-dimensional three- gimbal mechanism, gimbal lock occurs when the axes of two of the gimbals are driven into a parallel configuration, "locking" the system into rotation in a degenerate two-dimensional space.
Quaternionic analysis. In mathematics, quaternionic analysis is the study of functions with quaternions as the domain and/or range. Such functions can be called functions of a quaternion variable just as functions of a real variable or a complex variable are called. As with complex and real analysis, it is possible to study the concepts of ...