When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heat of dilution - Wikipedia

    en.wikipedia.org/wiki/Heat_of_dilution

    The heat of dilution can be defined from two perspectives: the differential heat and the integral heat. The differential heat of dilution is viewed on a micro scale, which is associated with the process in which a small amount of solvent is added to a large quantity of solution. The molar differential heat of dilution is thus defined as the enthalpy

  3. Enthalpy change of solution - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_change_of_solution

    The integral heat of dissolution is defined as a process of obtaining a certain amount of solution with a final concentration. The enthalpy change in this process, normalized by the mole number of solute, is evaluated as the molar integral heat of dissolution. Mathematically, the molar integral heat of dissolution is denoted as:

  4. Dilution (equation) - Wikipedia

    en.wikipedia.org/wiki/Dilution_(equation)

    The dilution in welding terms is defined as the weight of the base metal melted divided by the total weight of the weld metal. For example, if we have a dilution of 0.40, the fraction of the weld metal that came from the consumable electrode is 0.60.

  5. Hydration energy - Wikipedia

    en.wikipedia.org/wiki/Hydration_energy

    If the hydration energy is greater than the lattice energy, then the enthalpy of solution is negative (heat is released), otherwise it is positive (heat is absorbed). [3]The hydration energy should not be confused with solvation energy, which is the change in Gibb's free energy (not enthalpy) as solute in the gaseous state is dissolved. [4]

  6. Activity coefficient - Wikipedia

    en.wikipedia.org/wiki/Activity_coefficient

    In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. [1] In an ideal mixture, the microscopic interactions between each pair of chemical species are the same (or macroscopically equivalent, the enthalpy change of solution and volume variation in mixing is zero) and, as a result, properties of the mixtures ...

  7. Boiling-point elevation - Wikipedia

    en.wikipedia.org/wiki/Boiling-point_elevation

    The change in chemical potential of a solvent when a solute is added explains why boiling point elevation takes place. The boiling point elevation is a colligative property, which means that boiling point elevation is dependent on the number of dissolved particles but not their identity.

  8. Thermodynamic activity - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_activity

    The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.

  9. Enthalpy of mixing - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_mixing

    Enthalpy of mixing can often be ignored in calculations for mixtures where other heat terms exist, or in cases where the mixture is ideal. [2] The sign convention is the same as for enthalpy of reaction: when the enthalpy of mixing is positive, mixing is endothermic, while negative enthalpy of mixing signifies exothermic mixing. In ideal ...