Search results
Results From The WOW.Com Content Network
In credibility theory, a branch of study in actuarial science, the Bühlmann model is a random effects model (or "variance components model" or hierarchical linear model) used to determine the appropriate premium for a group of insurance contracts. The model is named after Hans Bühlmann who first published a description in 1967.
Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis , this may be the selection of a statistical model from a set of candidate models, given data.
A stochastic model would be to set up a projection model which looks at a single policy, an entire portfolio or an entire company. But rather than setting investment returns according to their most likely estimate, for example, the model uses random variations to look at what investment conditions might be like.
However mark to market prices should not be used in isolation, but rather compared to model prices to test their validity. Models should be improved to take into account the greater amount of market data available. New methods and new data are available to help improve models and these should be used. In the end all prices start off from a ...
In statistics, an estimator is a rule for calculating an estimate of a given quantity based on observed data: thus the rule (the estimator), the quantity of interest (the estimand) and its result (the estimate) are distinguished. [1] For example, the sample mean is a commonly used estimator of the population mean. There are point and interval ...
How to get quotes for your make and model. You can generally get quotes for your make and model over the phone, in person or online. Here are the steps you may take to get quotes online:. Visit ...
This technique can be particularly useful when calculating risks on a derivative. When calculating the delta using a Monte Carlo method, the most straightforward way is the black-box technique consisting in doing a Monte Carlo on the original market data and another one on the changed market data, and calculate the risk by doing the difference ...
In statistics, Mallows's, [1] [2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares.It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors.