Search results
Results From The WOW.Com Content Network
A simple displacement diagram illustrates the follower motion at a constant velocity rise followed by a similar return with a dwell in between as depicted in figure 2. [4] The rise is the motion of the follower away from the cam center, dwell is the motion where the follower is at rest, and return is the motion of the follower toward the cam ...
In most piston engines, the camshaft(s) are mechanically connected to the crankshaft. The crankshaft drives the camshaft (via a timing belt, timing chain or gears), which in turn actuates the intake and exhaust valves. [1] These valves allow the engine to inhale air (or an air/fuel mixture) and exhale the exhaust gasses. [2]
For twin-cam or DOHC engines, VCT was used on either the intake or exhaust camshaft. (Engines that have VCT on both camshafts are now designated as Ti-VCT.↓) The use of variable camshaft timing on the exhaust camshaft is for improved emissions, and vehicles with VCT on the exhaust camshaft do not require exhaust gas recirculation (EGR) as retarding the exhaust cam timing achieves the same ...
A camshaft operating two valves. A camshaft is a shaft that contains a row of pointed cams in order to convert rotational motion to reciprocating motion.Camshafts are used in piston engines (to operate the intake and exhaust valves), [1] [2] mechanically controlled ignition systems and early electric motor speed controllers.
It varies the timing of the valves by using hydraulic oil pressure to rotate the camshaft, known as "phasing", [1] in order to provide optimal valve timing for engine load conditions. The system is closed loop using the camshaft sensors, crankshaft sensors, air flow meter, throttle position as well as oxygen sensors and/or Air-Fuel ratio ...
In four-stroke cycle engines and some two-stroke cycle engines, the valve timing is controlled by the camshaft. It can be varied by modifying the camshaft, or it can be varied during engine operation by variable valve timing. It is also affected by the adjustment of the valve mechanism, and particularly by the tappet clearance.
SOHC design (for a 1973 Triumph Dolomite Sprint) . The oldest configuration of overhead camshaft engine is the single overhead camshaft (SOHC) design. [1] A SOHC engine has one camshaft per bank of cylinders, therefore a straight engine has a total of one camshaft and a V engine or flat engine has a total of two camshafts (one for each cylinder bank).
This sensor is one of the two most important sensors in modern-day engines, together with the camshaft position sensor. As the fuel injection (diesel engines) or spark ignition (petrol engines) is usually timed from the crank sensor position signal, failing sensor will cause an engine not to start or will cut out while running.