Search results
Results From The WOW.Com Content Network
Thus we can build an n × n rotation matrix by starting with a 2 × 2 matrix, aiming its fixed axis on S 2 (the ordinary sphere in three-dimensional space), aiming the resulting rotation on S 3, and so on up through S n−1. A point on S n can be selected using n numbers, so we again have 1 / 2 n(n − 1) numbers to describe any n × n ...
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
Rather than storing the threshold map as a matrix of × integers from 0 to , depending on the exact hardware used to perform the dithering, it may be beneficial to pre-calculate the thresholds of the map into a floating point format, rather than the traditional integer matrix format shown above.
Trilinear interpolation as two bilinear interpolations followed by a linear interpolation. Trilinear interpolation is a method of multivariate interpolation on a 3-dimensional regular grid . It approximates the value of a function at an intermediate point ( x , y , z ) {\displaystyle (x,y,z)} within the local axial rectangular prism linearly ...
For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...
If the matrix entries are real numbers, the matrix A can be used to represent two linear maps: one that maps the standard basis vectors to the rows of A, and one that maps them to the columns of A. In either case, the images of the basis vectors form a parallelogram that represents the image of the unit square under the mapping.
In computer graphics, marching squares is an algorithm that generates contours for a two-dimensional scalar field (rectangular array of individual numerical values). A similar method can be used to contour 2D triangle meshes. The contours can be of two kinds: Isolines – lines following a single data level, or isovalue.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop: