Search results
Results From The WOW.Com Content Network
A wave can be longitudinal where the oscillations are parallel (or antiparallel) to the propagation direction, or transverse where the oscillations are perpendicular to the propagation direction. These oscillations are characterized by a periodically time-varying displacement in the parallel or perpendicular direction, and so the instantaneous ...
These formulas provide the solution for the initial-value problem for the wave equation. They show that the solution at a given point P, given (t, x, y, z) depends only on the data on the sphere of radius ct that is intersected by the light cone drawn backwards from P. It does not depend upon data on the interior of this sphere.
Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum and alternating current. Oscillations can be used in physics to approximate complex interactions, such ...
That is, the sum and difference of two phases (in degrees) should be computed by the formulas [[+]] [[]] respectively. Thus, for example, the sum of phase angles 190° + 200° is 30° ( 190 + 200 = 390 , minus one full turn), and subtracting 50° from 30° gives a phase of 340° ( 30 − 50 = −20 , plus one full turn).
A mechanical wave is an oscillation of matter, and therefore transfers energy through a medium. [19] While waves can move over long distances, the movement of the medium of transmission—the material—is limited.
Simple harmonic motion can serve as a mathematical model for a variety of motions, but is typified by the oscillation of a mass on a spring when it is subject to the linear elastic restoring force given by Hooke's law. The motion is sinusoidal in time and demonstrates a single resonant frequency.
Vibration (from Latin vibrāre 'to shake') is a mechanical phenomenon whereby oscillations occur about an equilibrium point.Vibration may be deterministic if the oscillations can be characterised precisely (e.g. the periodic motion of a pendulum), or random if the oscillations can only be analysed statistically (e.g. the movement of a tire on a gravel road).
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]