When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.

  3. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    Simple harmonic motion can be considered the one-dimensional projection of uniform circular motion. If an object moves with angular speed ω around a circle of radius r centered at the origin of the xy-plane, then its motion along each coordinate is simple harmonic motion with amplitude r and angular frequency ω.

  4. Quantum harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Quantum_harmonic_oscillator

    The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.

  5. Normal mode - Wikipedia

    en.wikipedia.org/wiki/Normal_mode

    In order to calculate the internal energy and the specific heat, we must know the number of normal vibrational modes a frequency between the values ν and ν + dν. Allow this number to be f(ν)dν. Since the total number of normal modes is 3N, the function f(ν) is given by: =

  6. Creation and annihilation operators - Wikipedia

    en.wikipedia.org/wiki/Creation_and_annihilation...

    In the context of the quantum harmonic oscillator, one reinterprets the ladder operators as creation and annihilation operators, adding or subtracting fixed quanta of energy to the oscillator system. Creation/annihilation operators are different for bosons (integer spin) and fermions (half-integer spin).

  7. Tautochrone curve - Wikipedia

    en.wikipedia.org/wiki/Tautochrone_curve

    Therefore, the Lagrangian of a simple harmonic oscillator is isochronous. In the tautochrone problem, if the particle's position is parametrized by the arclength s ( t ) from the lowest point, the kinetic energy is then proportional to s ˙ 2 {\displaystyle {\dot {s}}^{2}} , and the potential energy is proportional to the height h ( s ) .

  8. Oscillation - Wikipedia

    en.wikipedia.org/wiki/Oscillation

    The systems where the restoring force on a body is directly proportional to its displacement, such as the dynamics of the spring-mass system, are described mathematically by the simple harmonic oscillator and the regular periodic motion is known as simple harmonic motion.

  9. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    The zero-point energy E = ⁠ ħω / 2 ⁠ causes the ground-state of a harmonic oscillator to advance its phase (color). This has measurable effects when several eigenstates are superimposed. The idea of a quantum harmonic oscillator and its associated energy can apply to either an atom or a subatomic particle.