When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stepwise regression - Wikipedia

    en.wikipedia.org/wiki/Stepwise_regression

    The main approaches for stepwise regression are: Forward selection, which involves starting with no variables in the model, testing the addition of each variable using a chosen model fit criterion, adding the variable (if any) whose inclusion gives the most statistically significant improvement of the fit, and repeating this process until none improves the model to a statistically significant ...

  3. PRESS statistic - Wikipedia

    en.wikipedia.org/wiki/PRESS_statistic

    Download QR code; Print/export ... and locally linear learning to speed-up the assessment and the selection of the ... selection; Stepwise regression; ...

  4. One in ten rule - Wikipedia

    en.wikipedia.org/wiki/One_in_ten_rule

    A "one in 20 rule" has been suggested, indicating the need for shrinkage of regression coefficients, and a "one in 50 rule" for stepwise selection with the default p-value of 5%. [ 4 ] [ 6 ] Other studies, however, show that the one in ten rule may be too conservative as a general recommendation and that five to nine events per predictor can be ...

  5. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    Download QR code; Print/export ... Using forward stepwise selection, researchers divided the variables into two blocks (see METHOD on the syntax following below ...

  6. Model selection - Wikipedia

    en.wikipedia.org/wiki/Model_selection

    Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis, this may be the selection of a statistical model from a set of candidate models, given data. In the simplest cases, a pre ...

  7. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret, [1] shorter training times, [2] to avoid the curse of dimensionality, [3]

  8. Heckman correction - Wikipedia

    en.wikipedia.org/wiki/Heckman_correction

    The Heckman correction is a statistical technique to correct bias from non-randomly selected samples or otherwise incidentally truncated dependent variables, a pervasive issue in quantitative social sciences when using observational data. [1]

  9. Mallows's Cp - Wikipedia

    en.wikipedia.org/wiki/Mallows's_Cp

    In statistics, Mallows's, [1] [2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares.It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors.