When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stepwise regression - Wikipedia

    en.wikipedia.org/wiki/Stepwise_regression

    The main approaches for stepwise regression are: Forward selection, which involves starting with no variables in the model, testing the addition of each variable using a chosen model fit criterion, adding the variable (if any) whose inclusion gives the most statistically significant improvement of the fit, and repeating this process until none improves the model to a statistically significant ...

  3. Mallows's Cp - Wikipedia

    en.wikipedia.org/wiki/Mallows's_Cp

    In statistics, Mallows's, [1] [2] named for Colin Lingwood Mallows, is used to assess the fit of a regression model that has been estimated using ordinary least squares.It is applied in the context of model selection, where a number of predictor variables are available for predicting some outcome, and the goal is to find the best model involving a subset of these predictors.

  4. Category:Regression variable selection - Wikipedia

    en.wikipedia.org/wiki/Category:Regression...

    Download QR code; Print/export ... Pages in category "Regression variable selection" The following 16 pages are in this category, out of 16 total. ... Stepwise regression

  5. Heckman correction - Wikipedia

    en.wikipedia.org/wiki/Heckman_correction

    The Heckman correction is a statistical technique to correct bias from non-randomly selected samples or otherwise incidentally truncated dependent variables, a pervasive issue in quantitative social sciences when using observational data. [1]

  6. Lasso (statistics) - Wikipedia

    en.wikipedia.org/wiki/Lasso_(statistics)

    In statistics and machine learning, lasso (least absolute shrinkage and selection operator; also Lasso, LASSO or L1 regularization) [1] is a regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and interpretability of the resulting statistical model.

  7. Multicollinearity - Wikipedia

    en.wikipedia.org/wiki/Multicollinearity

    Stepwise regression (the procedure of excluding "collinear" or "insignificant" variables) is especially vulnerable to multicollinearity, and is one of the few procedures wholly invalidated by it (with any collinearity resulting in heavily biased estimates and invalidated p-values). [2]

  8. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  9. Bayesian information criterion - Wikipedia

    en.wikipedia.org/wiki/Bayesian_information_criterion

    The BIC is formally defined as [3] [a] = ⁡ ⁡ (^). where ^ = the maximized value of the likelihood function of the model , i.e. ^ = (^,), where {^} are the parameter values that maximize the likelihood function and is the observed data;