Search results
Results From The WOW.Com Content Network
The strong real Jacobian conjecture was that a real polynomial map with a nowhere vanishing Jacobian determinant has a smooth global inverse. That is equivalent to asking whether such a map is topologically a proper map , in which case it is a covering map of a simply connected manifold , hence invertible.
Jacobian conjecture. Keller asked this as a question in 1939, and in the next few years there were several published incomplete proofs, including 3 by B. Segre, but Vitushkin found gaps in many of them. The Jacobian conjecture is (as of 2016) an open problem, and more incomplete proofs are regularly announced.
The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point. For instance, the continuously differentiable function f is invertible near a point p ∈ R n if the Jacobian determinant at p is non-zero.
If it is true, the Jacobian conjecture would be a variant of the inverse function theorem for polynomials. It states that if a vector-valued polynomial function has a Jacobian determinant that is an invertible polynomial (that is a nonzero constant), then it has an inverse that is also a polynomial function. It is unknown whether this is true ...
It is well known that the solution of the generalized inverse is a minimal L2 norm method. From the above derivation it is clear that the solution of the local inverse is a minimal L2 norm method subject to the condition that the influence of the unknown object is . Hence the local inverse is also a direct extension of the concept of the ...
The same terminology applies. A regular solution is a solution at which the Jacobian is full rank (). A singular solution is a solution at which the Jacobian is less than full rank. A regular solution lies on a k-dimensional surface, which can be parameterized by a point in the tangent space (the null space of the Jacobian).
Jacobian conjecture: if a polynomial mapping over a characteristic-0 field has a constant nonzero Jacobian determinant, then it has a regular (i.e. with polynomial components) inverse function. Manin conjecture on the distribution of rational points of bounded height in certain subsets of Fano varieties
The Jacobian conjecture is quite naturally posed in that setting. The motivation for looking at rather general polynomial transformations , say of the projective plane , came from the singularity theory for algebraic curves .