Search results
Results From The WOW.Com Content Network
Atomic number Element Molar mass Formal standard atomic weight s.a.w., formal short Note Z calculated; g·mol −1 A r, standard [2] A r, abridged and conventional [2]; C 9 H 8 O 4: 180.159 g·mol −1
ISO TR 29922-2017 provides a definition for standard dry air which specifies an air molar mass of 28,965 46 ± 0,000 17 kg·kmol-1. [2] GPA 2145:2009 is published by the Gas Processors Association. It provides a molar mass for air of 28.9625 g/mol, and provides a composition for standard dry air as a footnote. [3]
For some usage examples, consider the conversion of 1 SCCM to kg/s of a gas of molecular weight , where is in kg/kmol. Furthermore, consider standard conditions of 101325 Pa and 273.15 K, and assume the gas is an ideal gas (i.e., Z n = 1 {\\displaystyle Z_{n}=1} ).
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
Nitrogen is the most common pure element in the earth, making up 78.1% of the volume of the atmosphere [9] (75.5% by mass), around 3.89 million gigatonnes (3.89 × 10 18 kg). Despite this, it is not very abundant in Earth's crust, making up somewhere around 19 parts per million of this, on par with niobium , gallium , and lithium .
It is a mass-specific intrinsic property of the substance. It is the reciprocal of density ρ and it is also related to the molar volume and molar mass: = = ~ The standard unit of specific volume is cubic meters per kilogram (m 3 /kg), but other units include ft 3 /lb, ft 3 /slug, or mL/g. [1]
The molar mass is defined as the mass of a given substance divided by the amount of the substance, and is expressed in grams per mol (g/mol). That makes the molar mass an average of many particles or molecules (potentially containing different isotopes), and the molecular mass the mass of one specific particle or molecule. The molar mass is ...
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...