When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gradient boosting - Wikipedia

    en.wikipedia.org/wiki/Gradient_boosting

    Gradient boosting is a machine learning technique based on boosting in a functional space, where the target is pseudo-residuals instead of residuals as in traditional boosting. It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple ...

  3. XGBoost - Wikipedia

    en.wikipedia.org/wiki/XGBoost

    XGBoost works as Newton–Raphson in function space unlike gradient boosting that works as gradient descent in function space, a second order Taylor approximation is used in the loss function to make the connection to Newton–Raphson method. A generic unregularized XGBoost algorithm is:

  4. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    LightGBM, short for Light Gradient-Boosting Machine, is a free and open-source distributed gradient-boosting framework for machine learning, originally developed by Microsoft. [4] [5] It is based on decision tree algorithms and used for ranking, classification and other machine learning tasks. The development focus is on performance and ...

  5. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  6. Boosting (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Boosting_(machine_learning)

    Other algorithms that are similar in spirit [clarification needed] to boosting algorithms are sometimes called "leveraging algorithms", although they are also sometimes incorrectly called boosting algorithms. [9] The main variation between many boosting algorithms is their method of weighting training data points and hypotheses.

  7. CatBoost - Wikipedia

    en.wikipedia.org/wiki/Catboost

    It provides a gradient boosting framework which, among other features, attempts to solve for categorical features using a permutation-driven alternative to the classical algorithm. [7] It works on Linux , Windows , macOS , and is available in Python , [ 8 ] R , [ 9 ] and models built using CatBoost can be used for predictions in C++ , Java ...

  8. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    A decision tree is a simple representation for classifying examples. For this section, assume that all of the input features have finite discrete domains, and there is a single target feature called the "classification". Each element of the domain of the classification is called a class. A decision tree or a classification tree is a tree in ...

  9. Early stopping - Wikipedia

    en.wikipedia.org/wiki/Early_stopping

    It has been shown, for several boosting algorithms (including AdaBoost), that regularization via early stopping can provide guarantees of consistency, that is, that the result of the algorithm approaches the true solution as the number of samples goes to infinity. [5] [6] [7] [8]