When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Complex conjugate root theorem - Wikipedia

    en.wikipedia.org/wiki/Complex_conjugate_root_theorem

    In computing the product of the last two factors, the imaginary parts cancel, and we get ( x − 3 ) ( x 24 x + 29 ) . {\displaystyle (x-3)(x^{2}-4x+29).} The non-real factors come in pairs which when multiplied give quadratic polynomials with real coefficients.

  3. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x2)(x + 2) is a polynomial ...

  4. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    If one of these values is 0, we have a linear factor. If the values are nonzero, we can list the possible factorizations for each. Now, 2 can only factor as 1×2, 2×1, (−1)×(−2), or (−2)×(−1). Therefore, if a second degree integer polynomial factor exists, it must take one of the values p(0) = 1, 2, −1, or −2. and likewise for p(1).

  5. Like terms - Wikipedia

    en.wikipedia.org/wiki/Like_terms

    The like terms in this expression are the terms that can be grouped together by having exactly the same set of unknown factors. Here, the sets of unknown factors are ,, and .. By the rule in the first example, all terms with the same set of unknown factors, that is, all like terms, may be combined by adding or subtracting their coefficients ...

  6. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    The polynomial P = x 4 + 1 is irreducible over Q but not over any finite field. On any field extension of F 2, P = (x + 1) 4. On every other finite field, at least one of −1, 2 and −2 is a square, because the product of two non-squares is a square and so we have; If =, then = (+) ().

  7. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    A primorial x# is the product of all primes from 2 to x. The first: 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810 (sequence A002110 in the OEIS). 1# = 1 is sometimes included. A factorial x! is the product of all numbers from 1 to x.

  8. Special number field sieve - Wikipedia

    en.wikipedia.org/wiki/Special_number_field_sieve

    The SNFS works as follows. Let n be the integer we want to factor. As in the rational sieve, the SNFS can be broken into two steps: First, find a large number of multiplicative relations among a factor base of elements of Z/nZ, such that the number of multiplicative relations is larger than the number of elements in the factor base.

  9. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.