When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bond energy - Wikipedia

    en.wikipedia.org/wiki/Bond_energy

    The bond dissociation energy (enthalpy) [4] is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D). It is defined as the standard enthalpy change of the following fission: R—X → R + X. The BDE, denoted by Dº(R—X), is usually derived by the thermochemical equation,

  3. Binding energy - Wikipedia

    en.wikipedia.org/wiki/Binding_energy

    Bond energy and bond-dissociation energy are measures of the binding energy between the atoms in a chemical bond. It is the energy required to disassemble a molecule into its constituent atoms. This energy appears as chemical energy, such as that released in chemical explosions, the burning of chemical fuel and biological processes. Bond ...

  4. Bond valence method - Wikipedia

    en.wikipedia.org/wiki/Bond_valence_method

    Although the bond valence model is mostly used for validating newly determined structures, it is capable of predicting many of the properties of those chemical structures that can be described by localized bonds [3] In the bond valence model, the valence of an atom, V, is defined as the number of electrons the atom uses for bonding. This is ...

  5. Bond-dissociation energy - Wikipedia

    en.wikipedia.org/wiki/Bond-dissociation_energy

    The term bond-dissociation energy is similar to the related notion of bond-dissociation enthalpy (or bond enthalpy), which is sometimes used interchangeably.However, some authors make the distinction that the bond-dissociation energy (D 0) refers to the enthalpy change at 0 K, while the term bond-dissociation enthalpy is used for the enthalpy change at 298 K (unambiguously denoted DH° 298).

  6. Metallic bonding - Wikipedia

    en.wikipedia.org/wiki/Metallic_bonding

    The strong bonding of metals in liquid form demonstrates that the energy of a metallic bond is not highly dependent on the direction of the bond; this lack of bond directionality is a direct consequence of electron delocalization, and is best understood in contrast to the directional bonding of covalent bonds. The energy of a metallic bond is ...

  7. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    Valence bond theory views bonds as weakly coupled orbitals (small overlap). Valence bond theory is typically easier to employ in ground state molecules. The core orbitals and electrons remain essentially unchanged during the formation of bonds. σ bond between two atoms: localization of electron density Two p-orbitals forming a π-bond.

  8. Molecular mechanics - Wikipedia

    en.wikipedia.org/wiki/Molecular_mechanics

    A force field is used to minimize the bond stretching energy of this ethane molecule. Molecular mechanics uses classical mechanics to model molecular systems. The Born–Oppenheimer approximation is assumed valid and the potential energy of all systems is calculated as a function of the nuclear coordinates using force fields. Molecular ...

  9. Empirical valence bond - Wikipedia

    en.wikipedia.org/wiki/Empirical_valence_bond

    In theoretical chemistry, the Empirical Valence Bond (EVB) approach is an approximation for calculating free-energies of a chemical reaction in condensed-phase. It was first developed by Israeli chemist Arieh Warshel , [ 1 ] and was inspired by the way Marcus theory uses potential surfaces to calculate the probability of electron transfer .