When.com Web Search

  1. Ads

    related to: spherical trig theory worksheet printable answers 1 2 practice worksheets

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and ...

  3. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    Let u, v, and w denote the unit vectors from the center of the sphere to those corners of the triangle. We have u · u = 1, v · w = cos c, u · v = cos a, and u · w = cos b.The vectors u × v and u × w have lengths sin a and sin b respectively and the angle between them is C, so ⁡ ⁡ ⁡ = () = () () = ⁡ ⁡ ⁡

  4. Great-circle navigation - Wikipedia

    en.wikipedia.org/wiki/Great-circle_navigation

    If a navigator begins at P 1 = (φ 11) and plans to travel the great circle to a point at point P 2 = (φ 22) (see Fig. 1, φ is the latitude, positive northward, and λ is the longitude, positive eastward), the initial and final courses α 1 and α 2 are given by formulas for solving a spherical triangle

  5. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    [1] Spherical trigonometry was studied by early Greek mathematicians such as Theodosius of Bithynia, a Greek astronomer and mathematician who wrote Spherics, a book on the geometry of the sphere, [2] and Menelaus of Alexandria, who wrote a book on spherical trigonometry called Sphaerica and developed Menelaus' theorem. [3] [4]

  6. Outline of trigonometry - Wikipedia

    en.wikipedia.org/wiki/Outline_of_trigonometry

    The following outline is provided as an overview of and topical guide to trigonometry: Trigonometry – branch of mathematics that studies the relationships between the sides and the angles in triangles. Trigonometry defines the trigonometric functions, which describe those relationships and have applicability to cyclical phenomena, such as waves.

  7. Haversine formula - Wikipedia

    en.wikipedia.org/wiki/Haversine_formula

    In that case, a and b are ⁠ π / 2 ⁠ − φ 1,2 (that is, the, co-latitudes), C is the longitude separation λ 2 − λ 1, and c is the desired ⁠ d / R ⁠. Noting that sin(⁠ π / 2 ⁠ − φ) = cos(φ), the haversine formula immediately follows. To derive the law of haversines, one starts with the spherical law of cosines: