Search results
Results From The WOW.Com Content Network
In computer science, SUHA (Simple Uniform Hashing Assumption) is a basic assumption that facilitates the mathematical analysis of hash tables.The assumption states that a hypothetical hashing function will evenly distribute items into the slots of a hash table.
For any fixed set of keys, using a universal family guarantees the following properties.. For any fixed in , the expected number of keys in the bin () is /.When implementing hash tables by chaining, this number is proportional to the expected running time of an operation involving the key (for example a query, insertion or deletion).
A hash table uses a hash function to compute an index, also called a hash code, into an array of buckets or slots, from which the desired value can be found. During lookup, the key is hashed and the resulting hash indicates where the corresponding value is stored. A map implemented by a hash table is called a hash map.
When the data word is divided into 16-bit blocks, two 16-bit sums result and are combined into a 32-bit Fletcher checksum. Usually, the second sum will be multiplied by 2 16 and added to the simple checksum, effectively stacking the sums side-by-side in a 32-bit word with the simple checksum at the least significant end. This algorithm is then ...
The theoretical worst case is the probability that all keys map to a single slot. The practical worst case is the expected longest probe sequence (hash function + collision resolution method). This analysis considers uniform hashing, that is, any key will map to any particular slot with probability 1/m, a characteristic of universal hash functions.
Linear probing is a component of open addressing schemes for using a hash table to solve the dictionary problem.In the dictionary problem, a data structure should maintain a collection of key–value pairs subject to operations that insert or delete pairs from the collection or that search for the value associated with a given key.
The NIST Dictionary of Algorithms and Data Structures [1] is a reference work maintained by the U.S. National Institute of Standards and Technology.It defines a large number of terms relating to algorithms and data structures.
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...