Search results
Results From The WOW.Com Content Network
The Ages of Three Children puzzle (sometimes referred to as the Census-Taker Problem [1]) is a logical puzzle in number theory which on first inspection seems to have insufficient information to solve. However, with closer examination and persistence by the solver, the question reveals its hidden mathematical clues, especially when the solver ...
For example, if s=2, then ๐(s) is the well-known series 1 + 1/4 + 1/9 + 1/16 + …, which strangely adds up to exactly ๐²/6. When s is a complex number—one that looks like a+b๐, using ...
The misdirection in this riddle is in the second half of the description, where unrelated amounts are added together and the person to whom the riddle is posed assumes those amounts should add up to 30, and is then surprised when they do not โ — โ there is, in fact, no reason why the (10 โ − โ 1) โ × โ 3 โ + โ 2 โ = โ 29 sum should add up to 30.
The case = of this problem was used by Bjorn Poonen as the opening example in a survey on undecidable problems in number theory, of which Hilbert's tenth problem is the most famous example. [57] Although this particular case has since been resolved, it is unknown whether representing numbers as sums of cubes is decidable.
Only lines with n = 1 or 3 have no points (red). In mathematics, the coin problem (also referred to as the Frobenius coin problem or Frobenius problem, after the mathematician Ferdinand Frobenius) is a mathematical problem that asks for the largest monetary amount that cannot be obtained using only coins of specified denominations. [1]
The problem was first posed by Henry Dudeney in 1900, as a puzzle in recreational mathematics, phrased in terms of placing the 16 pawns of a chessboard onto the board so that no three are in a line. [2] This is exactly the no-three-in-line problem, for the case =. [3]
For example, when d=4, the hash table for two occurrences of d would contain the key-value pair 8 and 4+4, and the one for three occurrences, the key-value pair 2 and (4+4)/4 (strings shown in bold). The task is then reduced to recursively computing these hash tables for increasing n , starting from n=1 and continuing up to e.g. n=4.
In addition to S(2,3,9), Kramer and Mesner examined other systems that could be derived from S(5,6,12) and found that there could be up to 2 disjoint S(5,6,12) systems, up to 2 disjoint S(4,5,11) systems, and up to 5 disjoint S(3,4,10) systems. All such sets of 2 or 5 are respectively isomorphic to each other.