Search results
Results From The WOW.Com Content Network
In abstract algebra, given a magma with binary operation ∗ (which could nominally be termed multiplication), left division of b by a (written a \ b) is typically defined as the solution x to the equation a ∗ x = b, if this exists and is unique. Similarly, right division of b by a (written b / a) is the solution y to the equation y ∗ a = b ...
In this discussion, a "term" will refer to a string of numbers being multiplied or divided (that division is simply multiplication by a reciprocal) together. Terms are within the same expression and are combined by either addition or subtraction. For example, take the expression: + There are two terms in this expression.
An orange that has been sliced into two halves. In mathematics, division by two or halving has also been called mediation or dimidiation. [1] The treatment of this as a different operation from multiplication and division by other numbers goes back to the ancient Egyptians, whose multiplication algorithm used division by two as one of its fundamental steps. [2]
The term arithmetic has its root in the Latin term arithmetica which derives from the Ancient Greek words ἀριθμός (arithmos), meaning ' number ', and ἀριθμητική τέχνη (arithmetike tekhne), meaning ' the art of counting '. [3] There are disagreements about its precise definition.
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
An obelus (plural: obeluses or obeli) is a term in codicology and latterly in typography that refers to a historical annotation mark which has resolved to three modern meanings: Division sign ÷; Dagger † Commercial minus sign ⁒ (limited geographical area of use)
For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element a has a multiplicative inverse (i.e. an element x with ax = xa = 1).
The division of two whole numbers does not necessarily result in a whole number. For example, 1 divided by 4 equals 1/4, which is neither even nor odd, since the concepts of even and odd apply only to integers. But when the quotient is an integer, it will be even if and only if the dividend has more factors of two than the divisor. [6]