When.com Web Search

  1. Ads

    related to: volume problems geometry

Search results

  1. Results From The WOW.Com Content Network
  2. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.

  3. Doubling the cube - Wikipedia

    en.wikipedia.org/wiki/Doubling_the_cube

    Doubling the cube, also known as the Delian problem, is an ancient [a] [1]: 9 geometric problem. Given the edge of a cube , the problem requires the construction of the edge of a second cube whose volume is double that of the first.

  4. Paper bag problem - Wikipedia

    en.wikipedia.org/wiki/Paper_bag_problem

    A cushion filled with stuffing. In geometry, the paper bag problem or teabag problem is to calculate the maximum possible inflated volume of an initially flat sealed rectangular bag which has the same shape as a cushion or pillow, made out of two pieces of material which can bend but not stretch.

  5. Cavalieri's principle - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_principle

    The volume ratio is maintained when the height is scaled to h' = r √ π. 3. Decompose it into thin slices. 4. Using Cavalieri's principle, reshape each slice into a square of the same area. 5. The pyramid is replicated twice. 6. Combining them into a cube shows that the volume ratio is 1:3.

  6. Category:Unsolved problems in geometry - Wikipedia

    en.wikipedia.org/wiki/Category:Unsolved_problems...

    Pages in category "Unsolved problems in geometry" The following 48 pages are in this category, out of 48 total. ... Volume conjecture; W. Weinstein conjecture; Z.

  7. Hilbert's third problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_third_problem

    Unknown to Hilbert and Dehn, Hilbert's third problem was also proposed independently by Władysław Kretkowski for a math contest of 1882 by the Academy of Arts and Sciences of Kraków, and was solved by Ludwik Antoni Birkenmajer with a different method than Dehn's. Birkenmajer did not publish the result, and the original manuscript containing ...

  1. Ad

    related to: volume problems geometry