When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stellar nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Stellar_nucleosynthesis

    Hydrogen fusion (nuclear fusion of four protons to form a helium-4 nucleus [20]) is the dominant process that generates energy in the cores of main-sequence stars. It is also called "hydrogen burning", which should not be confused with the chemical combustion of hydrogen in an oxidizing atmosphere.

  3. Nuclear fusion - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fusion

    The Sun is a main-sequence star, and, as such, generates its energy by nuclear fusion of hydrogen nuclei into helium. In its core, the Sun fuses 620 million metric tons of hydrogen and makes 616 million metric tons of helium each second. The fusion of lighter elements in stars releases energy and the mass that always accompanies it.

  4. The Hope and Hype of Fusion Energy, Explained - AOL

    www.aol.com/news/hope-hype-fusion-energy...

    It’s the same process that produces energy in stars, including the sun. ... and lacking the hazardous waste and uncontrolled reaction risks of nuclear fission. And fusion relies on the abundant ...

  5. Proton–proton chain - Wikipedia

    en.wikipedia.org/wiki/Proton–proton_chain

    The total energy yield of one whole chain is 26.73 MeV. Energy released as gamma rays will interact with electrons and protons and heat the interior of the Sun. Also kinetic energy of fusion products (e.g. of the two protons and the 4 2 He from the p–p I reaction) adds energy to the plasma in the Sun.

  6. Nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Nucleosynthesis

    Stars fuse light elements to heavier ones in their cores, giving off energy in the process known as stellar nucleosynthesis. Nuclear fusion reactions create many of the lighter elements, up to and including iron and nickel in the most massive stars. Products of stellar nucleosynthesis remain trapped in stellar cores and remnants except if ...

  7. Silicon-burning process - Wikipedia

    en.wikipedia.org/wiki/Silicon-burning_process

    As can be seen, light nuclides such as deuterium or helium release large amounts of energy (a big increase in binding energy) when combined to form heavier elements—the process of fusion. Conversely, heavy elements such as uranium release energy when broken into lighter elements—the process of nuclear fission. In stars, rapid ...

  8. Fusion power - Wikipedia

    en.wikipedia.org/wiki/Fusion_power

    Then, in October 2023 the UK government, in enacting the Energy Act 2023, made the UK the first country to legislate for fusion separately from fission, to support planning and investment, including the UK's planned prototype fusion power plant for 2040; STEP [196] the UK is working with Canada and Japan in this regard. [197]

  9. Nuclear astrophysics - Wikipedia

    en.wikipedia.org/wiki/Nuclear_astrophysics

    The release of nuclear binding energy is what allows stars to shine for up to billions of years, and may disrupt stars in stellar explosions in case of violent reactions (such as 12 C+ 12 C fusion for thermonuclear supernova explosions). As matter is processed as such within stars and stellar explosions, some of the products are ejected from ...