When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The kinetic energy of an object is equal to the work, force times displacement , needed to achieve its stated velocity. Having gained this energy during its acceleration, the mass maintains this kinetic energy unless its speed changes. The same amount of work is done by the object when decelerating from its current speed to a state of rest.

  3. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    Conversely, a decrease in kinetic energy is caused by an equal amount of negative work done by the resultant force. Thus, if the net work is positive, then the particle's kinetic energy increases by the amount of the work. If the net work done is negative, then the particle's kinetic energy decreases by the amount of work. [18]

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Thermal energy, the energy carried by heat flow, is a type of kinetic energy not associated with the macroscopic motion of objects but instead with the movements of the atoms and molecules of which they are made. According to the work-energy theorem, when a force acts upon a body while that body moves along the line of the force, the force does ...

  5. Classical mechanics - Wikipedia

    en.wikipedia.org/wiki/Classical_mechanics

    For extended objects composed of many particles, the kinetic energy of the composite body is the sum of the kinetic energies of the particles. The workenergy theorem states that for a particle of constant mass m, the total work W done on the particle as it moves from position r 1 to r 2 is equal to the change in kinetic energy E k of the ...

  6. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    Lifting against gravity performs mechanical work on the object and stores gravitational potential energy in the object. If the object falls to the ground, gravity does mechanical work on the object which transforms the potential energy in the gravitational field to the kinetic energy released as heat on impact with the ground.

  7. Mechanical energy - Wikipedia

    en.wikipedia.org/wiki/Mechanical_energy

    The kinetic energy, K, depends on the speed of an object and is the ability of a moving object to do work on other objects when it collides with them. [ nb 2 ] [ 8 ] It is defined as one half the product of the object's mass with the square of its speed, and the total kinetic energy of a system of objects is the sum of the kinetic energies of ...

  8. Outline of energy - Wikipedia

    en.wikipedia.org/wiki/Outline_of_energy

    Energy – in physics, this is an indirectly observed quantity often understood as the ability of a physical system to do work on other physical systems. [ 1 ] [ 2 ] Since work is defined as a force acting through a distance (a length of space), energy is always equivalent to the ability to exert force (a pull or a push) against an object that ...

  9. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Kinetic energy T is the energy of the system's motion and is a function only of the velocities v k, not the positions r k, nor time t, so T = T(v 1, v 2, ...). V , the potential energy of the system, reflects the energy of interaction between the particles, i.e. how much energy any one particle has due to all the others, together with any ...