Search results
Results From The WOW.Com Content Network
A Mercator map can therefore never fully show the polar areas (but see Uses below for applications of the oblique and transverse Mercator projections). The Mercator projection is often compared to and confused with the central cylindrical projection , which is the result of projecting points from the sphere onto a tangent cylinder along ...
The straight-line distance between the central point on the map to any other point is the same as the straight-line 3D distance through the globe between the two points. c. 150 BC: Stereographic: Azimuthal Conformal Hipparchos* Map is infinite in extent with outer hemisphere inflating severely, so it is often used as two hemispheres.
A Cornucopia of Map Projections, a visualization of distortion on a vast array of map projections in a single image. G.Projector, free software can render many projections (NASA GISS). Color images of map projections and distortion (Mapthematics.com). Geometric aspects of mapping: map projection (KartoWeb.itc.nl).
Space-oblique Mercator projection is a map projection devised in the 1970s for preparing maps from Earth-survey satellite data. It is a generalization of the oblique Mercator projection that incorporates the time evolution of a given satellite ground track to optimize its representation on the map. The oblique Mercator projection, on the other ...
The Behrmann projection with Tissot's indicatrices The Mercator projection with Tissot's indicatrices. In cartography, a Tissot's indicatrix (Tissot indicatrix, Tissot's ellipse, Tissot ellipse, ellipse of distortion) (plural: "Tissot's indicatrices") is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local ...
The Mercator projection preserves angles but fails to preserve area, hence the massive distortion of Antarctica. Gauss's Theorema Egregium (Latin for "Remarkable Theorem") is a major result of differential geometry , proved by Carl Friedrich Gauss in 1827, that concerns the curvature of surfaces.
oblique Mercator projection. The oblique Mercator map projection is an adaptation of the standard Mercator projection. The oblique version is sometimes used in national mapping systems. When paired with a suitable geodetic datum, the oblique Mercator delivers high accuracy in zones less than a few degrees in arbitrary directional extent.
All map projections are interrupted at at least one point. Typical world maps are interrupted along an entire meridian. In that typical case, the interruption forms an east/west boundary, even though the globe has no boundaries. [1] Most map projections can be interrupted beyond what is required by the projection mathematics.