Ads
related to: equation of circles calculator with steps and two sides and 3 sets
Search results
Results From The WOW.Com Content Network
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011.
Choose two points on the circle, and call them V and A. Draw line OV and extended past O so that it intersects the circle at point B which is diametrically opposite the point V. Draw an angle whose vertex is point V and whose sides pass through points A, B. Draw line OA. Angle ∠BOA is a central angle; call it θ.
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.
Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...
Mutually tangent circles. Given three mutually tangent circles (black), there are in general two other circles mutually tangent to them (red).The construction of the Apollonian gasket starts with three circles , , and (black in the figure), that are each tangent to the other two, but that do not have a single point of triple tangency.
This is a consequence of Jacobi's two-square theorem, which follows almost immediately from the Jacobi triple product. [ 6 ] A much simpler sum appears if the sum of squares function r 2 ( n ) {\displaystyle r_{2}(n)} is defined as the number of ways of writing the number n {\displaystyle n} as the sum of two squares.
If a triangle has two particular circles as its circumcircle and incircle, there exist an infinite number of other triangles with the same circumcircle and incircle, with any point on the circumcircle as a vertex. (This is the n = 3 case of Poncelet's porism).
The equation defining these circles as a locus can be generalized to define the Fermat–Apollonius circles of larger sets of weighted points. Each circle in the second family (the red circles in the figure) is associated with an angle θ , and is defined as the locus of points X such that the inscribed angle ∠ CXD equals θ , { X | C X ^ D ...