When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Model selection - Wikipedia

    en.wikipedia.org/wiki/Model_selection

    Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis , this may be the selection of a statistical model from a set of candidate models, given data.

  3. Least-angle regression - Wikipedia

    en.wikipedia.org/wiki/Least-angle_regression

    It is computationally just as fast as forward selection. It produces a full piecewise linear solution path, which is useful in cross-validation or similar attempts to tune the model. If two variables are almost equally correlated with the response, then their coefficients should increase at approximately the same rate.

  4. Heckman correction - Wikipedia

    en.wikipedia.org/wiki/Heckman_correction

    Heckman's correction involves a normality assumption, provides a test for sample selection bias and formula for bias corrected model. Suppose that a researcher wants to estimate the determinants of wage offers, but has access to wage observations for only those who work.

  5. Estimation statistics - Wikipedia

    en.wikipedia.org/wiki/Estimation_statistics

    Many significance tests have an estimation counterpart; [26] in almost every case, the test result (or its p-value) can be simply substituted with the effect size and a precision estimate. For example, instead of using Student's t-test, the analyst can compare two independent groups by calculating the mean difference and its 95% confidence ...

  6. Robust statistics - Wikipedia

    en.wikipedia.org/wiki/Robust_statistics

    It is a model-free measure in the sense that it simply relies on calculating the estimator again with a different sample. On the right is Tukey's biweight function, which, as we will later see, is an example of what a "good" (in a sense defined later on) empirical influence function should look like.

  7. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  8. Linear trend estimation - Wikipedia

    en.wikipedia.org/wiki/Linear_trend_estimation

    For example, detailed notes on the meaning of linear time trends in the regression model are given in Cameron (2005); [1] Granger, Engle, and many other econometricians have written on stationarity, unit root testing, co-integration, and related issues (a summary of some of the works in this area can be found in an information paper [2] by the ...

  9. Jackknife resampling - Wikipedia

    en.wikipedia.org/wiki/Jackknife_resampling

    This simple example for the case of mean estimation is just to illustrate the construction of a jackknife estimator, while the real subtleties (and the usefulness) emerge for the case of estimating other parameters, such as higher moments than the mean or other functionals of the distribution.