When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    If a data distribution is approximately normal then about 68 percent of the data values are within one standard deviation of the mean (mathematically, μ ± σ, where μ is the arithmetic mean), about 95 percent are within two standard deviations (μ ± 2σ), and about 99.7 percent lie within three standard deviations (μ ± 3σ).

  3. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The simplest case of a normal distribution is known as the standard normal distribution or unit normal distribution. This is a special case when μ = 0 {\textstyle \mu =0} and σ 2 = 1 {\textstyle \sigma ^{2}=1} , and it is described by this probability density function (or density): φ ( z ) = e − z 2 2 2 π . {\displaystyle \varphi (z ...

  4. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).

  5. Statistical dispersion - Wikipedia

    en.wikipedia.org/wiki/Statistical_dispersion

    In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.

  6. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    In the dice example the standard deviation is √ 2.9 ≈ 1.7, slightly larger than the expected absolute deviation of 1.5. The standard deviation and the expected absolute deviation can both be used as an indicator of the "spread" of a distribution.

  7. Deviation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Deviation_(statistics)

    Statistics of the distribution of deviations are used as measures of statistical dispersion. A distribution with different standard deviations reflects varying degrees of dispersion among its data points. The first standard deviation from the mean in a normal distribution encompasses approximately 68% of the data.

  8. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The one-sided variant can be used to prove the proposition that for probability distributions having an expected value and a median, the mean and the median can never differ from each other by more than one standard deviation. To express this in symbols let μ, ν, and σ be respectively the mean, the median, and the standard deviation. Then

  9. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    If () is a general scalar-valued function of a normal vector, its probability density function, cumulative distribution function, and inverse cumulative distribution function can be computed with the numerical method of ray-tracing (Matlab code). [17]