Search results
Results From The WOW.Com Content Network
The simplest chi-squared distribution is the square of a standard normal distribution. So wherever a normal distribution could be used for a hypothesis test, a chi-squared distribution could be used. Suppose that Z {\displaystyle Z} is a random variable sampled from the standard normal distribution, where the mean is 0 {\displaystyle 0} and the ...
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
The chi-squared statistic can then be used to calculate a p-value by comparing the value of the statistic to a chi-squared distribution. The number of degrees of freedom is equal to the number of cells , minus the reduction in degrees of freedom, . The chi-squared statistic can be also calculated as
The demonstration of the t and chi-squared distributions for one-sample problems above is the simplest example where degrees-of-freedom arise. However, similar geometry and vector decompositions underlie much of the theory of linear models , including linear regression and analysis of variance .
Chi-squared goodness of fit tests are used to determine the adequacy of curves fit to data. The null hypothesis is that the curve fit is adequate. It is common to determine curve shapes to minimize the mean square error, so it is appropriate that the goodness-of-fit calculation sums the squared errors.
It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. The chi distribution describes the positive square roots of a variable obeying a chi-squared distribution.
where and are the same as for the chi-square test, denotes the natural logarithm, and the sum is taken over all non-empty bins. Furthermore, the total observed count should be equal to the total expected count: ∑ i O i = ∑ i E i = N {\displaystyle \sum _{i}O_{i}=\sum _{i}E_{i}=N} where N {\textstyle N} is the total number of observations.
In statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation ( MSWD ) in isotopic dating [ 1 ] and variance of unit weight in the context of weighted least squares .