When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. S-matrix - Wikipedia

    en.wikipedia.org/wiki/S-matrix

    The S-matrix is closely related to the transition probability amplitude in quantum mechanics and to cross sections of various interactions; the elements (individual numerical entries) in the S-matrix are known as scattering amplitudes. Poles of the S-matrix in the complex-energy plane are identified with bound states, virtual states or resonances.

  3. Scattering parameters - Wikipedia

    en.wikipedia.org/wiki/Scattering_parameters

    The Scattering transfer parameters or T-parameters of a 2-port network are expressed by the T-parameter matrix and are closely related to the corresponding S-parameter matrix. However, unlike S parameters, there is no simple physical means to measure the T parameters in a system, sometimes referred to as Youla waves.

  4. S-matrix theory - Wikipedia

    en.wikipedia.org/wiki/S-matrix_theory

    In S-matrix theory, the S-matrix relates the infinite past to the infinite future in one step, without being decomposable into intermediate steps corresponding to time-slices. This program was very influential in the 1960s, because it was a plausible substitute for quantum field theory , which was plagued with the zero interaction phenomenon at ...

  5. Partial-wave analysis - Wikipedia

    en.wikipedia.org/wiki/Partial-wave_analysis

    where (,) is the so-called scattering amplitude, which is in this case only dependent on the elevation angle and the energy. In conclusion, this gives the following asymptotic expression for the entire wave function:

  6. Feynman diagram - Wikipedia

    en.wikipedia.org/wiki/Feynman_diagram

    The transition amplitude is then given as the matrix element of the S-matrix between the initial and final states of the quantum system. Feynman used Ernst Stueckelberg's interpretation of the positron as if it were an electron moving backward in time. [3] Thus, antiparticles are represented as moving backward along the time axis in Feynman ...

  7. LSZ reduction formula - Wikipedia

    en.wikipedia.org/wiki/LSZ_reduction_formula

    In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements (the scattering amplitudes) from the time-ordered correlation functions of a quantum field theory.

  8. Bootstrap model - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_model

    Chew and followers believed that it would be possible to use crossing symmetry and Regge behavior to formulate a consistent S-matrix for infinitely many particle types. The Regge hypothesis would determine the spectrum, crossing and analyticity would determine the scattering amplitude (the forces), while unitarity would determine the self ...

  9. Schwinger–Dyson equation - Wikipedia

    en.wikipedia.org/wiki/Schwinger–Dyson_equation

    In his paper "The S-Matrix in Quantum electrodynamics", [1] Dyson derived relations between different S-matrix elements, or more specific "one-particle Green's functions", in quantum electrodynamics, by summing up infinitely many Feynman diagrams, thus working in a perturbative approach.