Search results
Results From The WOW.Com Content Network
TensorFlow.nn is a module for executing primitive neural network operations on models. [40] Some of these operations include variations of convolutions (1/2/3D, Atrous, depthwise), activation functions ( Softmax , RELU , GELU, Sigmoid , etc.) and their variations, and other operations ( max-pooling , bias-add, etc.).
Microsoft Cognitive Toolkit (previously known as CNTK), an open source toolkit for building artificial neural networks. [82] OpenNN, a comprehensive C++ library implementing neural networks. [83] PyTorch, an open-source Tensor and Dynamic neural network in Python. [84] TensorFlow, an open-source software library for machine learning. [85]
Designed to enable fast experimentation with deep neural networks, Keras focuses on being user-friendly, modular, and extensible. It was developed as part of the research effort of project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System), [ 5 ] and its primary author and maintainer is François Chollet , a Google engineer.
In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...
In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...
On the other hand, in the define-by-run approach, programming language's native constructs such as if statements and for loops can be used to describe such flow. This flexibility is especially useful to implement recurrent neural networks. [13] [14] Another advantage is ease of debugging. [12]
Neural Network Exchange Format (NNEF) is an artificial neural network data exchange format developed by the Khronos Group.It is intended to reduce machine learning deployment fragmentation by enabling a rich mix of neural network training tools and inference engines to be used by applications across a diverse range of devices and platforms.
A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models. While individual neurons are simple, many of them together in a network can perform complex tasks. There are two main types of neural networks: