When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Types of mesh - Wikipedia

    en.wikipedia.org/wiki/Types_of_mesh

    Basic three-dimensional cell shapes. The basic 3-dimensional element are the tetrahedron, quadrilateral pyramid, triangular prism, and hexahedron. They all have triangular and quadrilateral faces. Extruded 2-dimensional models may be represented entirely by the prisms and hexahedra as extruded triangles and quadrilaterals.

  3. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    Its vertex–center–vertex angle—the angle between lines from the tetrahedron center to any two vertices—is ⁡ = ⁡ (), denoted the tetrahedral angle. [9] It is the angle between Plateau borders at a vertex. Its value in radians is the length of the circular arc on the unit sphere resulting from centrally projecting one edge of the ...

  4. Trirectangular tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Trirectangular_tetrahedron

    A trirectangular tetrahedron with its base shown in green and its apex as a solid black disk. It can be constructed by a coordinate octant and a plane crossing all 3 axes away from the origin (x>0; y>0; z>0) and x/a+y/b+z/c<1. In geometry, a trirectangular tetrahedron is a tetrahedron where all three face angles at one vertex are right angles.

  5. Compound of two tetrahedra - Wikipedia

    en.wikipedia.org/wiki/Compound_of_two_tetrahedra

    If two regular tetrahedra are given the same orientation on the 3-fold axis, a different compound is made, with D 3h, [3,2] symmetry, order 12.. Other orientations can be chosen as 2 tetrahedra within the compound of five tetrahedra and compound of ten tetrahedra the latter of which can be seen as a hexagrammic pyramid:

  6. Tetrahedral symmetry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_symmetry

    A regular tetrahedron, an example of a solid with full tetrahedral symmetry. A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation.

  7. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The quantity h (called the Coxeter number) is 4, 6, 6, 10, and 10 for the tetrahedron, cube, octahedron, dodecahedron, and icosahedron respectively. The angular deficiency at the vertex of a polyhedron is the difference between the sum of the face-angles at that vertex and 2 π. The defect, δ, at any vertex of the Platonic solids {p,q} is

  8. Trigonometry of a tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Trigonometry_of_a_tetrahedron

    The 6 edge lengths - associated to the six edges of the tetrahedron. The 12 face angles - there are three of them for each of the four faces of the tetrahedron. The 6 dihedral angles - associated to the six edges of the tetrahedron, since any two faces of the tetrahedron are connected by an edge.

  9. Tetrahedral number - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_number

    A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid with a triangular base and three sides, called a tetrahedron. The n th tetrahedral number, Te n , is the sum of the first n triangular numbers , that is,