Search results
Results From The WOW.Com Content Network
Any plane containing a bimedian (connector of opposite edges' midpoints) of a tetrahedron bisects the volume of the tetrahedron. [22] For tetrahedra in hyperbolic space or in three-dimensional elliptic geometry, the dihedral angles of the tetrahedron determine its shape and hence its volume.
Basic three-dimensional cell shapes. The basic 3-dimensional element are the tetrahedron, quadrilateral pyramid, triangular prism, and hexahedron. They all have triangular and quadrilateral faces. Extruded 2-dimensional models may be represented entirely by the prisms and hexahedra as extruded triangles and quadrilaterals.
Given the edge length .The surface area of a truncated tetrahedron is the sum of 4 regular hexagons and 4 equilateral triangles' area, and its volume is: [2] =, =.. The dihedral angle of a truncated tetrahedron between triangle-to-hexagon is approximately 109.47°, and that between adjacent hexagonal faces is approximately 70.53°.
The quantity h (called the Coxeter number) is 4, 6, 6, 10, and 10 for the tetrahedron, cube, octahedron, dodecahedron, and icosahedron respectively. The angular deficiency at the vertex of a polyhedron is the difference between the sum of the face-angles at that vertex and 2 π. The defect, δ, at any vertex of the Platonic solids {p,q} is
The triangular-prism-first orthographic projection of the tetrahedral prism into 3D space has a projection envelope in the shape of a triangular prism. The two tetrahedral cells are projected onto the triangular ends of the prism, each with a vertex that projects to the center of the respective triangular face.
A packing density of 1, filling space completely, requires non-spherical shapes, such as honeycombs. Replacing each contact point between two spheres with an edge connecting the centers of the touching spheres produces tetrahedrons and octahedrons of equal edge lengths. The FCC arrangement produces the tetrahedral-octahedral honeycomb.
Coxeter, Longuet-Higgins & Miller (1954) define uniform polyhedra to be vertex-transitive polyhedra with regular faces. They define a polyhedron to be a finite set of polygons such that each side of a polygon is a side of just one other polygon, such that no non-empty proper subset of the polygons has the same property.
Regular polyhedron. Platonic solid: . Tetrahedron, Cube, Octahedron, Dodecahedron, Icosahedron; Regular spherical polyhedron. Dihedron, Hosohedron; Kepler–Poinsot ...