Search results
Results From The WOW.Com Content Network
If the polynomial to be factored is + + + +, then all possible linear factors are of the form , where is an integer factor of and is an integer factor of . All possible combinations of integer factors can be tested for validity, and each valid one can be factored out using polynomial long division .
All polynomials with coefficients in a unique factorization domain (for example, the integers or a field) also have a factored form in which the polynomial is written as a product of irreducible polynomials and a constant. This factored form is unique up to the order of the factors and their multiplication by an invertible constant.
The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b). In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.
Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O(n 2) operations in F q using "classical" arithmetic, or in O(nlog(n) log(log(n)) ) operations in F q using "fast" arithmetic.
To convert the standard form to factored form, one needs only the quadratic formula to determine the two roots r 1 and r 2. To convert the standard form to vertex form, one needs a process called completing the square. To convert the factored form (or vertex form) to standard form, one needs to multiply, expand and/or distribute the factors.
Having a factor of 3 means a number isn’t prime (with the sole exception of 3 itself). ... When s is a complex number—one that looks like a+b𝑖, using the imaginary number 𝑖—finding ...
Given a quadratic polynomial of the form + the numbers h and k may be interpreted as the Cartesian coordinates of the vertex (or stationary point) of the parabola. That is, h is the x -coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h ), and k is the minimum value (or maximum value, if a < 0) of the quadratic ...
This shows that every polynomial over the rationals is associated with a unique primitive polynomial over the integers, and that the Euclidean algorithm allows the computation of this primitive polynomial. A consequence is that factoring polynomials over the rationals is equivalent to factoring primitive polynomials over the integers.