Search results
Results From The WOW.Com Content Network
Another example is an implicit function given by x − C(y) = 0 where C is a cubic polynomial having a "hump" in its graph. Thus, for an implicit function to be a true (single-valued) function it might be necessary to use just part of the graph. An implicit function can sometimes be successfully defined as a true function only after "zooming in ...
The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).
In the study of graph algorithms, an implicit graph representation (or more simply implicit graph) is a graph whose vertices or edges are not represented as explicit objects in a computer's memory, but rather are determined algorithmically from some other input, for example a computable function.
In general, implicit curves fail the vertical line test (meaning that some values of x are associated with more than one value of y) and so are not necessarily graphs of functions. However, the implicit function theorem gives conditions under which an implicit curve locally is given by the graph of a function (so in particular it has no self ...
An implicit surface is the set of zeros of a function of three variables. Implicit means that the equation is not solved for x or y or z . The graph of a function is usually described by an equation z = f ( x , y ) {\displaystyle z=f(x,y)} and is called an explicit representation.
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Comparative statics results are usually derived by using the implicit function theorem to calculate a linear approximation to the system of equations that defines the equilibrium, under the assumption that the equilibrium is stable.
If b 1 ≠ 0 then the implicit function theorem guarantees there is a smooth function h so that the curve has the form y = h(x) near the origin. Similarly, if b 0 ≠ 0 then there is a smooth function k so that the curve has the form x = k(y) near the origin.