Search results
Results From The WOW.Com Content Network
The indefinite inner product space itself is not necessarily a Hilbert space; but the existence of a positive semi-definite inner product on implies that one can form a quotient space on which there is a positive definite inner product.
Product of vectors in Minkowski space is an example of indefinite inner product, although, technically speaking, it is not an inner product according to the standard definition above. Minkowski space has four dimensions and indices 3 and 1 (assignment of "+" and "−" to them differs depending on conventions ).
The dot product on is an example of a bilinear form which is also an inner product. [1] An example of a bilinear form that is not an inner product would be the four-vector product. The definition of a bilinear form can be extended to include modules over a ring, with linear maps replaced by module homomorphisms.
The most important examples of nondegenerate forms are inner products and symplectic forms. Symmetric nondegenerate forms are important generalizations of inner products, in that often all that is required is that the map be an isomorphism, not positivity. For example, a manifold with an inner product structure on its tangent spaces is a ...
For indefinite lattices, the classification is easy to describe. Write R m,n for the m + n dimensional vector space R m+n with the inner product of (a 1, ...
In mathematics, the signature (v, p, r) [clarification needed] of a metric tensor g (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix g ab of the metric tensor with respect to a basis.
An inner product space is a normed vector space whose norm is the square root of the inner product of a vector and itself. The Euclidean norm of a Euclidean vector space is a special case that allows defining Euclidean distance by the formula d ( A , B ) = ‖ A B → ‖ . {\displaystyle d(A,B)=\|{\overrightarrow {AB}}\|.}
The indefinite special orthogonal group, SO(p, q) is the subgroup of O(p, q) consisting of all elements with determinant 1. Unlike in the definite case, SO( p , q ) is not connected – it has 2 components – and there are two additional finite index subgroups, namely the connected SO + ( p , q ) and O + ( p , q ) , which has 2 components ...