Search results
Results From The WOW.Com Content Network
The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.
It equals the spatial frequency. For example, a wavenumber in inverse centimeters can be converted to a frequency expressed in the unit gigahertz by multiplying by 29.979 2458 cm/ns (the speed of light, in centimeters per nanosecond); [5] conversely, an electromagnetic wave at 29.9792458 GHz has a wavelength of 1 cm in free space.
Wavelength is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. [3] [4] The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter lambda (λ). For a modulated wave, wavelength may refer to the carrier wavelength of the signal.
Permanent link; Page information; ... Planck–Einstein equation and de Broglie wavelength relations P = ... ω = 2πf is the angular frequency and frequency of the ...
Defining equation SI units Dimension AM index: h, h AM = / A = carrier amplitude A m = peak amplitude of a component in the modulating signal . dimensionless dimensionless FM index: h FM = / Δf = max. deviation of the instantaneous frequency from the carrier frequency
The Planck constant, or Planck's constant, denoted by , [1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.
The 41.8% point is the wavelength-frequency-neutral peak (i.e. the peak in power per unit change in logarithm of wavelength or frequency). These are the points at which the respective Planck-law functions 1 / λ 5 , ν 3 and ν 2 / λ 2 , respectively, divided by exp ( hν / k B T ) − 1 attain their maxima.
Using two formulas from special relativity, one for the relativistic mass energy and one for the relativistic momentum = = = = allows the equations for de Broglie wavelength and frequency to be written as = = = =, where = | | is the velocity, the Lorentz factor, and the speed of light in vacuum.