Search results
Results From The WOW.Com Content Network
In some literature, the term complete matching is used. In the above figure, only part (b) shows a perfect matching. A perfect matching is also a minimum-size edge cover. Thus, the size of a maximum matching is no larger than the size of a minimum edge cover: () . A graph can only contain a perfect matching when the graph has an even ...
In graph theory, a perfect matching in a graph is a matching that covers every vertex of the graph. ... In some literature, the term complete matching is used.
3-dimensional matchings. (a) Input T. (b)–(c) Solutions. In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching (also known as 2-dimensional matching) to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices (instead of edges containing 2 vertices in a usual graph).
The case of exact graph matching is known as the graph isomorphism problem. [1] The problem of exact matching of a graph to a part of another graph is called subgraph isomorphism problem. Inexact graph matching refers to matching problems when exact matching is impossible, e.g., when the number of vertices in the two graphs are different. In ...
In graph theory, the matching polytope of a given graph is a geometric object representing the possible matchings in the graph. ... and the complete graph on 4 vertices.
An example of a bipartite graph, with a maximum matching (blue) and minimum vertex cover (red) both of size six. In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs.
In the mathematical fields of graph theory and combinatorics, a matching polynomial ... If G is the complete graph K n, then M G (x) is an Hermite polynomial:
A cubic (but not bridgeless) graph with no perfect matching, showing that the bridgeless condition in Petersen's theorem cannot be omitted. In the mathematical discipline of graph theory, Petersen's theorem, named after Julius Petersen, is one of the earliest results in graph theory and can be stated as follows: Petersen's Theorem.