Ads
related to: how to find the mode in math definition geometry worksheet answers grade
Search results
Results From The WOW.Com Content Network
The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.
A geometry: it is equipped with a metric and is flat. A topology: there is a notion of open sets. There are interfaces among these: Its order and, independently, its metric structure induce its topology. Its order and algebraic structure make it into an ordered field.
The use of multiple representations supports and requires tasks that involve decision-making and other problem-solving skills. [2] [3] [4] The choice of which representation to use, the task of making representations given other representations, and the understanding of how changes in one representation affect others are examples of such mathematically sophisticated activities.
In the 19th century, the internal development of geometry (pure mathematics) led to definition and study of non-Euclidean geometries, spaces of dimension higher than three and manifolds. At this time, these concepts seemed totally disconnected from the physical reality, but at the beginning of the 20th century, Albert Einstein developed the ...
In statistics and computational geometry, the notion of centerpoint is a generalization of the median to data in higher-dimensional Euclidean space. Given a set of points in d -dimensional space, a centerpoint of the set is a point such that any hyperplane that goes through that point divides the set of points in two roughly equal subsets: the ...
Geometry (from Ancient Greek γεωμετρία (geōmetría) 'land measurement'; from γῆ (gê) 'earth, land' and μέτρον (métron) 'a measure') [1] is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. [2]
Diophantine geometry should not be confused with the geometry of numbers, which is a collection of graphical methods for answering certain questions in algebraic number theory. Arithmetic geometry, however, is a contemporary term for much the same domain as that covered by the term Diophantine geometry.
The geometric mean can be understood in terms of geometry. The geometric mean of two numbers, a {\displaystyle a} and b {\displaystyle b} , is the length of one side of a square whose area is equal to the area of a rectangle with sides of lengths a {\displaystyle a} and b {\displaystyle b} .